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ABSTRACT

An integral equation method for the cal-

culation of capacitance and i.ncluctance

matrices is presented. The method i.s suited

for multiconductor transmission lines em–

bedded in a multilayered dielectric medium

on top of a ground plane. Conductors of

arbitrary polygonal cross–section can be

handled, as well as infinitely thin con-

ductors. The method is new in two respects.

The kernel of ‘the integral equation is the

space domainGreen’s funeti.onof the layered

medium. The accuracy of the solution is

improved by using basis functions which

exactly model the singular behaviour of the

charge density in the neighborhood of a

conductor edge. Numerical examples show the

accuracy of the calculations and the

complexity of the configurations that can

be treated.

1. INTRODUCTION

In high speed digital design, good modeling

of the interconnections becomes

increasingly important. In the qu@,si-TEM

approximation a bus is completely described
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by its capacitance and inductance m<l~trices.

In this paper, a new method is presented

for the numerical calculation of the

capacitance and inductance matr:lces of

complicated bus structures embedded in a

multilayered dielectric on top of a ground

plane.

Wepresentan integral equation meth.odwhich

uses the Green’s function of a layered

dielectric on top of a ground plane. The

number of dielectric layers is arbitrary.

The Green’s function, although in a first

step calculated by spectral domain

techniques, is transformed to the space

domain. Conductors of arbitrary polygonal

cross-sections can be treated, as well as

infinitely thin strips. The integral

equation is solvedby the method of’ moments

in conjunction with point-matching. The

unknown surface charge density on the con–

ductors is expanded inbasls functions which

accurately model the singular behaviour of

the charge density in the neighborhood of

an edge. As we use the Green’s fuuction of

the layered medium, no extra polarisation

chargesat the boundarie~between tlhelayers

have to be taken into account as was the

case in [11.

2. OUTLINE OF THE METHOD

Figure 1 shows the general geometry of the

problem. A conductor with Circttli!ir cross--

section can be approximated by a regular

polygon. The integral equation method is

used to calculate the capacitance matrix
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g of the bus. The inductance matrix ~ is

derived from the vacuum capacitance matrix

c_v, which is the capacitance matrix of the

samebus structure, but with all dielectrics

replaced by air, using the simple formula

L.CV= CoMoo The relevant integral equation——

is of the form:

~ P(~’)G(~l=’)dS(=’) = V(i) (1)

where:

s ——

—
r ——

5’ ——

p(~l) =

--
G(rlr’) =

collection of all conductor

surfaces

observation point

variable integration point

charge distribution over the

conductor surfaces

spatial Green’s function of

the layered dielectric medium

The Green’s function of the layered

dielectric medium is the solution of:

32G 82G –S(x,y-y’)
+ —. (2)

ax2 aY2 cc
or

where er takes a constant value within each

layer.

In order to determine G, a Fourier trans–

formation with respect to x is introduced

and G is first determined in the spatial

Fourier domain. Inverse Fourier

transformation leads to the spatial Green’s

function. Special care is taken to

accurately determine this inverse trans-

formation when source and observation point

are closely spaced together. This in term

allows acorrect evaluation of these–called

self–patch contributions to (l).

The unknown charge distribution p(;’) is

expanded in basis funotions:

(3)

Each side of a polygon is divided into a

number of elementary intervals. Xnthei.nner

intervals, such

basis functions

as AB on fig. 2, linear

are used:

p(t) = xi (1 - t) + Xi+l t
(4)

Ostsl

where t is proportional with the arc length

along an elementary interval. The

coefficients xi and Xi+l are the unknown

coefficients of the basis functions and

correspond with the charge densities in the

endpoints of the interval.

In the outer intervals near the edges, such

as EF, the first terms of a series expansion

which accurately models the singular

behaviour of the Charge distribution in the

neighborhood of an edge are used [2]. In

this case, the charge distribution takes

the form

P(t) = xl tv-l + X2 tv
(5)

V>o; Ostsl

where t is proportional to the distance to

the edge. The sum xl + X2 corresponds to

the charge density in the non-singular

end-point of the interval. The value of v

is obtained froma formula whichwas derived

by Meixner [2]

‘1 –E2=
sinv@2

sinv(201–02) (6)
c1 + ‘2

The meaning of the quantities cl, e2, @l

and @2 is madeclear in Figure 2. Application

of the poht matching technique which

consists in satisfying (1) in a limited

number of points in the center or at the

endpoints of each elementary interval

reduces (1) to a set of linear algebraio

equations. This set is solved by a least

squares method.

3. NUMERICAL EXAMPLES

a. Thin microstrip line

Analysis of the simple geometry of Figure

3 is used to illustrate the accuracy of the

method. For a number of ratios VIII, where

1? is the stripwidth and H is the substrate
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thickness, the results of the method

described above are compared to the results

of the numerical method of Wei et al. [11,

who uses the free-space Green’s function,

to the results of the well–known formulas

of Gupta [31 and to the results of more

recent and more accurate formulas by

Eammerstad and Jensen [41. The

characteristic impedances that result from

the different calculation methods are shown

in Table 1. The results of Wei et al. are

obtained by using 12 subsections on the

strip, 15 subsections at the dielectric

interface between –2W and -W/2, and another

15 subsections at the dielectric interface

betweenW/2and2W. Our results are obtained

by using 20 subsections on the strip. This

required about 15 seconds CPU–timeper value

of the ratio W/H on a VAX 3200 workstation.

b. Circular wires in a three-layered

dielectric medium

Figure 4 shows a typical discrete wiring

geometry [51. The circular cross-sections

are approximated by regular octagons. Each

of the sides of the octagons is divided into

4 subsections, which leads to a total of

64 subsections. Table 2 shows the results

of the calculations, which took 5 minutes

and 27’ seconds of CPU time on a VAX 3200

workstation.
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Our We&

w/Ii results Gupta et al. Harnmerstad

0.4 90.3204 90.1907 92.2785 $10.3339

0.7 72.7372 72.6731 73.9626 ‘i~2.7516

1.0 61.8422 61.5907 62,8109 61.8397

2.0 42.2676 42.3945 42.9980 42.2600

4.0 26.4429 26.5168 26.9709 26.4593

10. 12.7132 12.7164 12.9961 :12.7’198

Table 1: calculated characteristic<?

impedances (Q)

I 137.8 –59.20 I
c = 1-59.20 137.8 I

(p’F/m)—

c=
I 34.33 -13.59 I

–v I-13.59 34.33 I
(pF/m)

L=
I 384.3

,?j~~.~ ~ (nH/m)— I 152.1 .

Table 2:

Capacitance, vacuum–capacita,nce and

inductance matrices of the geometry

of Figure 4.
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Figure 1: General gcomctry of the problem

&

2

Figure 2: Conducting wedge at tic interface
belween two cliclcebics
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Figure 3: Thin inicroship line Figure 4: Geometry of example b

1016


