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A MULTICONDUCTOR TRANSMISSIONLINE IN A
MULTILAYERED DIELECTRIC MEDIUM

¥. Delbare and D. De Zutter

*
Laboratory of Electromagnetism and Acoustics, University of Ghent
Ghent, Belgium

ABSTRACT

An integral equation method for the cal-
culation of capacitance and inductance
natrices is presented. The method is suited
for multiconductor transmission lines em—
bedded in a multilayered dielectric medium
on top of a ground plane. Conductors of
arbitrary polygonal cross-section can be
handled, as well as infinitely thin con-
ductors. The method is new in two respects.
The kernel of the integral equation is the
space domain Green's function of the layered
medium. The accuracy of the solution is
improved by using basils functions which
exactly model the singular behaviour of the
charge density in the neighbourhood of a
conductor edge. Numerical examples show the
accuracy of the calculations and the

complexity of the configurations that can
be treated.

1. INTRODUCTION

In high speed digital design, good modeling
of the interconnections
increasingly important.

becomes
In the quasi-TEM
approximation a bus is completely described
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by its capacitance and inductance matrices.
In this paper, a new method is presented
for the numerical calculation of the
capacitance and inductance matrices of
complicated bus structures embedded in a
multilayered dielectric on top of a ground
plane.

We present an integral equation method which
uses the Green’s function of a layered
dielectric on top of a ground plane. The
nunber of dielectric layers is arbitrary.
The Green’'s function, although in a first
step calculated Dby spectral
is transformed to the space
domain. Conductors of arbitrary polygonal
cross—-sections can be treated, as well as
infinitely +thin strips. The integral
equation is solved by the method of moments
The
unknown surface charge density on the con-
ductors is expanded in basis functions which
accurately model the singular behaviour of
the charge density in the neighbourhood of
an edge. As we use the Green’'s function of
the layered medium, no extra polarisation
charges at the boundarieg between the layers
have to be taken into account as was the
case in [1].

domain
techniques,

in conjunction with point-matching.

2. OUTLINE OF THE METHOD

Figure 1 shows the general geometry of the
problem. A conductor with circular cross-
section

polygon.
used to

can be approximated by a regular
The integral equation method is
calculate the capacitance matrix
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C of the bus. The inductance matrix L is
derived from the vacuum capacitance matrix
C,» which is the capacitance matrix of the
same bus structure, but with all dielectrics
replaced by air, using the simple formula
L-Cy = Eoo-
is of the form:

The relevant integral equation

S p(@G(TIT')AS(T') = V(T)

5 (1)

where:

S = collection of all conductor
surfaces

T = observation point

T’ = variable integration point

p(z*) - charge distribution over the
conductor surfaces

G(rIT’') = spatial Green's function of
the layered dielectric medium

The Green’'s function of the layered

dielectric medium is the solution of:
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where €. takes a constant value within each
layer.

In order to determine G, a Fourier trans-
formation with respect to x is introduced
and G is first determined in the spatial
Fourier domain. Inverse Fourier
transformation leads to the spatial Green's
care 1is taken to

accurately determine this inverse trans-

function. Special
formation when source and observation point
are closely spaced together. This in term
allows a correct evaluation of the so-called
self-patch contributions to (1).

The unknown charge distribution p(r') is
expanded in basis functions:

X,

_ N
p(r’') = ¢ i

£.(r")
i=1 1

(3)
Each side of a polygon is divided into a
number of elementary intervals. In the inner
such as AB on fig.
bagis functions are used:

intervals, 2, linear
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p(t) = x;, (1 - t) + x t
i i+l (4)
0stsl

wvhere t is proportional with the arc length
along The
141 oTe the unknown
coefficients of the basis functions and
correspond with the charge densities in the
endpoints of the interval.

an elementary interval.

coefficients Xy and x

In the outer intervals near the edges, such
as EF, the first terms of a series expansion
which accurately models the singular
behaviour of the charge distribution in the
neighbourhood of an edge are used [2]. In

this case, the charge distribution takes
the form
p(t) = x; sV . X, tY
(8)
v>0;0sts1

where t is proportional to the distance to
the edge. The sum Xy 2 corresponds to
the charge density in the non-singular
end-point of the interval. The value of v
is obtained from a formula which was derived
by Meixner [2]

+ X

e1 - ez _ éin\)d)2 (6
€, + €, 51nv(2¢1—¢5)
The meaning of the quantities €y ez, ¢1

and ¢2 is made clear in Figure 2. Application
of +the point matching technique which
consists in satisfying (1) in a limited
number of points in the center or at the
endpoints of each elementary dinterval
reduces (1) to a set of linear algebraic
equations. This set is solved by a least
squares method.

3. NUMERTICAL EXAMPLES

a. Thin microstrip line

Analysis of the simple geometry of Figure
3 is used to illustrate the accuracy of the
method. For a number of ratiogs W/H, where
¥ is the stripwidth and K is the substrate



thickness, the of the method
described above are compared to the results
of the numerical method of Wei et al. [1],
who uses the free-space Green’'s function,
to the results of the well-known formulas
of Gupta [3] and to the results of more

recent

results

and more accurate
Hammerstad

formulas by

[4]. The
characteristic impedances that result from
the different calculation methods are shown
in Table 1.
obtained by using 12 subsections on the
15 subsections at the dielectric
interface between -2¥ and -W/2, and another
15 subsections at the dielectric interface
between W/2 and 2W. Our results are obtained
by using 20 subsections on the strip. This
required about 15 seconds CPU-time per value
of the ratio W/H on a VAX 3200 workstation.

and Jensen

The results of Wei et al. are

strip,

b. Circular wires in a three-layered
dielectric medium

Figure 4 shows a typical discrete wiring
geometry [5]. The circular cross-sections
are approximated by regular octagons. Each
of the sides of the octagons is divided into
which leads to a total of
64 subsections. Table 2 shows the results
of the calculations, which took 5 minutes
and 27 seconds of CPU time on a VAX 3200
workstation.

4 subsections,
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Our Vel
W/H results Gupta et al. Hammerstad
0.4 90.3204 90.1007 92.2788 90.33392
0.7 v2.7372 72.68731 73.9628 72.7516
1.0 61.8422 61.5907 62,8109 61.8397
2.0 42.2676 42.3945 42,9980 42.2600
4.0 26.4429 26.5168 26.9709 26.4593
10. 12.7132 12.7164 12.9961 12.7198
Table 1: calculated characteristic
impedances (Q)
| 137.8 -59.20 | ,
C = |-s9.20 137v.8 | C(PF/M)
_ | 34.33 -13.59 |
Cy = |-13.89 B34.33 | (PF/M)
_ | 384.3 152.1 |
L - 152.1 3sa.3 | C(0E/M)
Table 2:

Capacitance, vacuum-capacitance and
inductance matrices of the geometry
of Figure 4.
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Figurc 3: Thin microstrip line Figure 4: Geometry of example b
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